Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.

نویسندگان

  • Thomas J Roberts
  • Richard L Marsh
چکیده

The function of many muscles during natural movements is to accelerate a mass. We used a simple model containing the essential elements of this functional system to investigate which musculoskeletal features are important for increasing the mechanical work done in a muscle-powered acceleration. The muscle model consisted of a muscle-like actuator with frog hindlimb muscle properties, operating across a lever to accelerate a load. We tested this model in configurations with and without a series elastic element and with and without a variable mechanical advantage. When total muscle shortening was held constant at 30%, the model produced the most work when the muscle operated with a series elastic element and an effective mechanical advantage that increased throughout the contraction (31 J kg(-1) muscle vs 26.6 J kg(-1) muscle for the non-compliant, constant mechanical advantage configuration). We also compared the model output with the dynamics of jumping bullfrogs, measured by high-speed video analysis, and the length changes of the plantaris muscle, measured by sonomicrometry. This comparison revealed that the length, force and power trajectory of the body of jumping frogs could be accurately replicated by a model of a fully active muscle operating against an inertial load, but only if the model muscle included a series elastic element. Sonomicrometer measurements of the plantaris muscle revealed an unusual, biphasic pattern of shortening, with high muscle velocities early and late in the contraction, separated by a period of slow contraction. The model muscle produced this pattern of shortening only when an elastic element was included. These results demonstrate that an elastic element can increase the work output in a muscle-powered acceleration. Elastic elements uncouple muscle fiber shortening velocity from body movement to allow the muscle fibers to operate at slower shortening velocities and higher force outputs. A variable muscle mechanical advantage improves the effectiveness of elastic energy storage and recovery by providing an inertial catch mechanism. These results can explain the high power outputs observed in jumping frogs. More generally, our model suggests how the function of non-muscular elements of the musculoskeletal system enhances performance in muscle-powered accelerations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jumping mechanisms and strategies in moths (Lepidoptera).

To test whether jumping launches moths into the air, take-off by 58 species, ranging in mass from 0.1 to 220 mg, was captured in videos at 1000 frames s(-1). Three strategies for jumping were identified. First, rapid movements of both middle and hind legs provided propulsion while the wings remained closed. Second, middle and hind legs again provided propulsion but the wings now opened and flap...

متن کامل

Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.

A fundamental feature of vertebrate muscle is that maximal force can be generated only over a limited range of lengths. It has been proposed that locomotor muscles operate over this range of lengths in order to maximize force production during movement. However, locomotor behaviours like jumping may require muscles to shorten substantially in order to generate the mechanical work necessary to p...

متن کامل

Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs...

متن کامل

Muscular Activity and Bubble Formation in Animals Decompressed to Simulated Altitudes

1. Muscular activity during decompression causes bubble formation in the blood of intact bullfrogs. The amount of gas liberated depends on the degrees of muscular activity and supersaturation (as influenced by altitude). In decompressed dissected bullfrogs, bubbles appear in veins leading from active but not from inactive muscles. 2. Muscular activity during decompression similarly causes bubbl...

متن کامل

Evidence for a vertebrate catapult: elastic energy storage in the plantaris tendon during frog jumping.

Anuran jumping is one of the most powerful accelerations in vertebrate locomotion. Several species are hypothesized to use a catapult-like mechanism to store and rapidly release elastic energy, producing power outputs far beyond the capability of muscle. Most evidence for this mechanism comes from measurements of whole-body power output; the decoupling of joint motion and muscle shortening expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 206 Pt 15  شماره 

صفحات  -

تاریخ انتشار 2003